Equitable neighbour-sum-distinguishing edge and total colourings

نویسندگان

  • Olivier Baudon
  • Monika Pilsniak
  • Jakub Przybylo
  • Mohammed Senhaji
  • Éric Sopena
  • Mariusz Wozniak
چکیده

With any (not necessarily proper) edge k-colouring γ : E(G) −→ {1, . . . , k} of a graph G, one can associate a vertex colouring σγ given by σγ(v) = ∑ e∋v γ(e). A neighbour-sumdistinguishing edge k-colouring is an edge colouring whose associated vertex colouring is proper. The neighbour-sum-distinguishing index of a graph G is then the smallest k for which G admits a neighbour-sum-distinguishing edge k-colouring. These notions naturally extends to total colourings of graphs that assign colours to both vertices and edges. We study in this paper equitable neighbour-sum-distinguishing edge colourings and total colourings, that is colourings γ for which the number of elements in any two colour classes of γ differ by at most one. We determine the equitable neighbour-sumdistinguishing index of complete graphs, complete bipartite graphs and forests, and the equitable neighbour-sum-distinguishing total chromatic number of complete graphs and bipartite graphs.

منابع مشابه

Asymptotically optimal neighbour sum distinguishing colourings of graphs

Consider a simple graph G = (V,E) and its proper edge colouring c with the elements of the set {1, 2, . . . , k}. The colouring c is said to be neighbour sum distinguishing if for every pair of vertices u, v adjacent in G, the sum of colours of the edges incident with u is distinct from the corresponding sum for v. The smallest integer k for which such colouring exists is known as the neighbour...

متن کامل

On neighbour-distinguishing colourings from lists

Let G be a finite simple graph, let C be a set of colours (in this paper we shall always suppose C ⊆ N) and let f : E(G) → C be an edge colouring of G. The colour set of a vertex v ∈ V (G) with respect to f is the set Sf (v) of colours of edges incident to v. The colouring f is neighbour-distinguishing if it distinguishes any two adjacent vertices by their colour sets, i.e., Sf (u) 6= Sf (v) wh...

متن کامل

Neighbour-Distinguishing Edge Colourings of Random Regular Graphs

A proper edge colouring of a graph is neighbour-distinguishing if for all pairs of adjacent vertices v, w the set of colours appearing on the edges incident with v is not equal to the set of colours appearing on the edges incident with w. Let ndi(G) be the least number of colours required for a proper neighbour-distinguishing edge colouring of G. We prove that for d ≥ 4, a random d-regular grap...

متن کامل

The neighbour-sum-distinguishing edge-colouring game

Let γ : E(G) −→ N∗ be an edge colouring of a graph G and σγ : V (G) −→ N∗ the vertex colouring given by σγ(v) = ∑ e3v γ(e) for every v ∈ V (G). A neighbour-sumdistinguishing edge-colouring of G is an edge colouring γ such that for every edge uv in G, σγ(u) 6= σγ(v). The study of neighbour-sum-distinguishing edge-colouring of graphs was initiated by Karoński, Łuczak and Thomason [8]. They conjec...

متن کامل

Vertex-distinguishing proper edge colourings of some regular graphs

The vertex-distinguishing index χs(G) of a graph G is the minimum number of colours required to properly colour the edges of G in such a way that any two vertices are incident with different sets of colours. We consider this parameter for some regular graphs. Moreover, we prove that for any graph, the value of this invariant is not changed if the colouring above is, in addition, required to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 222  شماره 

صفحات  -

تاریخ انتشار 2017